## 12–3 The Quadratic Formula

**Objective:** To learn the quadratic formula and use it to solve equations.

### The Quadratic Formula

The solutions of a quadratic equation in the form of  $ax^2 + bx + c = 0$ ,  $a \neq 0$  and  $b^2 - 4ac \ge 0$  are given by the formula

$$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}.$$

Use the quadratic formula to solve  $3x^2 + 5x - 2 = 0$ . Example 1

 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ , where a = 3, b = 5, and c = -2. Solution

> $x = \frac{-5 \pm \sqrt{(5)^2 - 4(3)(-2)}}{2(3)}$ Substitute the given values of a, b, and c.

 $=\frac{-5 \pm \sqrt{25 + 24}}{6}$ 

 $=\frac{-5 \pm \sqrt{49}}{6} = \frac{-5 \pm 7}{6}$ 

 $x = \frac{-5+7}{6} = \frac{2}{6} = \frac{1}{3}$  or  $x = \frac{-5-7}{6} = \frac{-12}{6} = -2$ 

The check is left to you. The solution set is  $\{\frac{1}{3}, -2\}$ .

Use the quadratic formula to solve each equation.

$$1 r^2 + 3r - 10 = 0$$

1. 
$$x^2 + 3x - 10 = 0$$
 2.  $x^2 - 8x + 7 = 0$ 

3. 
$$x^2 + 2x - 3 = 0$$

$$4. x^2 - 14x + 24 = 0$$

5. 
$$n^2 + 5n - 6 = 0$$

6. 
$$x^2 - 6x - 40 = 0$$

7. 
$$2x^2 + 3x - 2 = 0$$

$$8. \ 3u^2 - 5u - 2 = 0$$

9. 
$$3x^2 - 10x - 8 = 0$$

10. 
$$3x^2 - 2x - 1 = 0$$

11. 
$$2x^2 - 5x - 7 = 0$$

12. 
$$5x^2 + 6x - 8 = 0$$

Use the quadratic formula to solve  $x^2 = x - 6$ . Example 2

 $x^2-x+6=0$ Rewrite the equation in standard form. Solution

 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ , where a = 1, b = -1, and c = 6.

 $x = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(1)(6)}}{2(1)} = \frac{1 \pm \sqrt{1 - 24}}{2} = \frac{1 \pm \sqrt{-23}}{2}$ 

Since  $\sqrt{b^2 - 4ac} = \sqrt{-23}$  and  $\sqrt{-23}$  isn't a real number, there is no real solution.

### 12-3 The Quadratic Formula (continued)

Use the quadratic formula to solve each equation.

13. 
$$x^2 - 4x + 6 = 0$$

14. 
$$2x^2 = 3x - 1$$

15. 
$$x^2 - 4x = 30$$

16. 
$$2x^2 + 2x + 5 = 0$$

17. 
$$4x^2 + 20x = -9$$

18. 
$$3x^2 - 3x + 4 = 0$$

#### Example 3

Use the quadratic formula to solve  $2x^2 - 3x - 4 = 0$ . Give irrational roots in simplest radical form and then approximate them to the nearest tenth. You may wish to use a calculator.

Solution

$$2x^2 - 3x - 4 = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
, where  $a = 2, b = -3$ , and  $c = -4$ .

$$x = \frac{3 \pm \sqrt{9 - 4(2)(-4)}}{2(2)}$$
 Substitute the given values of a, b, and c.

$$= \frac{3 \pm \sqrt{9 + 32}}{4}$$
 Simplify.  
$$= \frac{3 \pm \sqrt{41}}{4}$$

Since 
$$\sqrt{41} \approx 6.40$$
,  $x \approx \frac{3 + 6.4}{4} = 2.35 \approx 2.4$   
or  $x \approx \frac{3 - 6.4}{4} = -0.85 \approx -0.9$ 

The check is left to you.

The solution set is  $\left\{ \frac{3 + \sqrt{41}}{4}, \frac{3 - \sqrt{41}}{4} \right\}$  or  $\{2.4, -0.9\}$ .

Use the quadratic formula to solve each equation. Give irrational roots in simplest radical form and then approximate them to the nearest tenth. You may wish to use a calculator.

19. 
$$2x^2 = 8x - 5$$

**20.** 
$$3x^2 + 2x = 2$$

**21.** 
$$x^2 - 4x - 10 = 0$$

**22.** 
$$x^2 - 4x - 2 = 0$$

23. 
$$2x^2 - 4x + 1 = 0$$

**24.** 
$$3x^2 - 8x + 2 = 0$$

**25.** 
$$2x^2 + 1 = 3x$$

**26.** 
$$3x^2 + x = 2$$

**27.** 
$$4x^2 - 11x = 3$$

# **Mixed Review Exercises**

Solve each open sentence and graph its solution set.

1. 
$$|x - 2| \le 5$$

2. 
$$2|y + 5| = 4$$

3. 
$$|2n + 3| < 5$$

**4.** 
$$1 < 2z + 1 \le 7$$

**5.** 
$$\sqrt{x} = 5$$

**6.** 
$$\sqrt{5n+1} = 6$$

7. 
$$2\sqrt{2x} = 12$$

8. 
$$|3 + 2k| = 11$$

9. 
$$3|2 - m| = 12$$

Solve by completing the square.

10. 
$$x^2 - 8x + 12 = 0$$

11. 
$$3x^2 + 6x = 0$$

12. 
$$c^2 - c = 12$$